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ABSTRACT

The homogenized energy framework quantifying ferroelectric and ferromagnetic hysteresis is increasingly used
for comprehensive material characterization and model-based control design. For operating regimes in which
thermal relaxation mechanisms and stress-dependencies are negligible, existing algorithms are sufficiently effi-
cient to permit device optimization and the potential for real-time control implementation. In this paper, we
develop algorithms employing lookup tables which permit the high speed implementation of formulations which
incorporate relaxation mechanisms and electromechanical coupling. Aspects of the algorithms are illustrated
through comparison with experimental data.

1 Homogenized Energy Framework

Ferroelectric and ferromagnetic materials are being considered as transducers for an increasing number of ap-
plications due to their broadband capabilities, large electromechanical and magnetomechanical coupling factors,
and their dual capability for actuating and sensing. At low drive levels, the direct and converse electromechani-
cal/magnetomechanical effects are approximately linear, and linear models and control designs can be employed.
However, at the moderate to high drive levels where the unique transducer capabilities are manifested, the con-
stitutive material properties are inherently nonlinear and hysteretic. Material characterization necessitates the
development of models which accurately characterize constitutive nonlinearities and hysteresis whereas device
optimization and real-time control implementation requires that the models be highly efficient to implement.
While a number of frameworks have been developed for characterizing ferroelectric and ferromagnetic hysteresis,
the competing requirements of accuracy and efficiency limit which models may be considered for both material
characterization and real-time implementation.

At the microscopic scale, the physical mechanisms which produce hysteresis in ferroelectric and ferromagnetic
materials differ substantially since ferroelectricity is due to the ionic structure of materials and ferromagnetism
results from interactions between magnetic moments and electron spins. However, at the domain or macroscopic
scale, shared physical and energy properties permit the development of unified frameworks for characterizing
hysteresis of compounds (see [14] for details regarding shared properties of ferroic materials at the various
scales).

In addition to the dielectric and magnetic hysteresis exhibited by the compounds, transducer models must
characterize the thermal relaxation effects and stress-dependencies exhibited by ferroelectric and ferromagnetic
materials. The former phenomenon is illustrated in Figure 1(a) with magnetic data collected from a steel rod [3].
Stress effects are illustrated in Figure 1(b) via PLZT data from [9].

As detailed in [14], several frameworks have been developed to characterize ferroelectric and ferromagnetic
hysteresis for regimes in which relaxation mechanisms and stress-dependencies are negligible. These include
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Figure 1: (a) Magnetization data from a steel rod illustrating the effect of magnetic after-effects on biased minor
loops [3]. (b) PLZT data showing the effect of stress on polarization [9].

domain wall models [7, 10, 17], Preisach models [5, 12, 13, 21], and homogenized energy models [11, 15, 16, 18, 20].
Whereas certain facets of relaxation and stress-dependence have been incorporated in domain wall models and
Preisach models – e.g., [4] and [6] – comprehensive theory incorporating these mechanisms for general compounds
has not been developed within these two frameworks. Hence we focus on the homogenized energy framework
which naturally incorporates thermal relaxation and direct electromechanical/magnetomechanical effects due to
the energy basis of the framework.

As detailed in [1, 2, 14, 19, 20], the general homogenized energy model for ferroelectric materials is

[P (E, σ)](t) =
∫ ∞

0

∫ ∞

−∞
[P (E + EI , σ; Ec)](t)νc(Ec)νI(EI)dEIdEc, (1)

where E and σ denote input electric fields and stresses, P is the macroscopic polarization, Ec and EI are local
coercive and interaction fields, and νc, νI are densities which incorporate the effects of material nonhomogeneities,
polycrystallinity, and variable effective fields Ee = E + EI . It is shown in subsequent sections that the kernel
P follows from direct energy minimization when thermal relaxation effects are negligible or from Boltzmann
principles if relaxation is significant.

The magnetic model is analogous. For magnetic field H, magnetization M , coercive field Hc and interaction
field HI , the model is

[M(H,σ)](t) =
∫ ∞

0

∫ ∞

−∞
[M(H + HI , σ; Hc)](t)νc(Hc)νI(HI)dHIdHc. (2)

In both cases, it is assumed that the densities νc and νI satisfy the criteria

νc(x) defined for x > 0,

νI(−x) = νI(x),

|νc(x)| ≤ c1e
−a1x, |νI(x)| ≤ c2e

−a2x

(3)

for positive c1, a1, c2, a2. These assumptions enforce the physical properties that the local coercive fields are
positive, low-field Rayleigh loops are symmetric, and local coercive and interaction fields decay as a function of
distance.

For implementation purposes, either Gaussian or Newton-Cotes quadrature routines are used to approximate
the integrals in (1) or (2) – see Chapter 8 of [14]. To illustrate, let Ec[i], i = 1, . . . , Nc, and EI [j], j = 1, . . . , NI ,
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denote the abscissas (quadrature points) and ŵc[i], ŵI [j] denote the respective quadrature weights. Approxima-
tion of the integrals in (1) then yields the discretized model

[P (E, σ)](t) =
Nc∑

i=1

NI∑

j=1

[P (E + EI [j], σ; Ec[i])](t)νc(Ec[i])νI(EI [j])ŵc[i]ŵI [j]

=
Nc∑

i=1

NI∑

j=1

[P (E + EI [j], σ; Ec[i])](t)wc[i]wI [j]

(4)

where wc[i] = ŵc[i]νc(Ec[i]) and wI [j] = ŵI [j]νI(EI [j]). The discretization of the magnetization model is
similar. We note that efficient implementation algorithms are required when large quadrature limits Nc and NI

are dictated by accuracy requirements.
The analogy between the polarization model (1) and magnetization model (2) illustrates the manner in which

the framework characterizes hysteresis in the combined class of materials – see [14, 19]. To simplify subsequent
discussion, we focus primarily on the polarization models (1) and (4) and note that analogous results follow
for the ferromagnetic model. Aspects of both models are illustrated in examples and through comparison with
experimental data in Section 5.

The technique for constructing the kernel P can be summarized as follows. We first construct Gibbs energy
relations G comprised of a Helmholtz energy ψ, which quantifies the internal energy associated with a continuum
of dipole or moment configurations, and elastic, electrostatic, or magnetostatic work relations. For regimes in
which thermal relaxation is negligible, P is determined by minimizing G with respect to P . Physically, this
can be interpreted as specifying the polarization that results when dipoles reorient in response to an applied
field. To incorporate thermal relaxation mechanisms, the Gibbs and relative thermal energies are balanced using
Boltzmann principles. As detailed in Section 2.6 of [14], this is equivalent to minimizing a combined measure of
the internal and relative thermal energies.

In Section 2 we summarize the construction of appropriate energy functionals and formulation of the kernel
P . Whereas the model construction has appeared in the literature – e.g., see [1, 2, 14, 19] – we reformulate
various components to facilitate the construction of highly efficient implementation algorithms through the use
of lookup tables. These algorithms are presented in Section 3, and in Section 4 we illustrate that computation
times can be reduced by up one to four of magnitude when implementing formulations which incorporate thermal
relaxation and/or stress-dependencies. In Section 5 we illustrate the accuracy of the framework for characterizing
the data in Figure 1.

2 Energy Relations and Construction of the Kernel P

We summarize in Section 2.1 appropriate Helmholtz and Gibbs energy relations for stress-invariant regimes
which involve 180o switching and stress-dependent regimes with both 180o and 90o switching. In Section 2.2 we
detail the manner through which the Gibb’s energy is used to construct kernels P in the absence or presence of
thermal activation which produces relaxation phenomenon. Issues relating to the implementation of the kernels
are presented in Section 2.3, and various kernel constructions are compared from a computational perspective in
Section 2.4.

2.1 Helmholtz and Gibbs Energy Relations

2.1.1 Stress-Invariant Regimes: 180o Switching

As detailed in [14, 20], an appropriate Helmholtz energy relation for temperature-invariant, stress-invariant
operating regimes with strictly 180o switching is

3
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Figure 2: (a) Helmholtz energy for the stress-invariant case, and (b) Helmholtz energy for the stress-dependent
case.

ψ(P ) =





η(P + PR)2/2, P ≤ PI

η

2
(PI − PR)

(
P 2

PI
− PR

)
, |P | < PI

η(P − PR)2/2, P ≥ PI

, (5)

where PI denotes the positive inflection point, PR is the local remanence value, and η is the reciprocal slope ∂E
∂P .

It is shown in Section 2.2 that using this piecewise quadratic approximation for the energy results in a piecewise
linear kernel where η is the reciprocal slope of the positive and negative kernel branches. This energy relation is
plotted in Figure 2(a).

The Helmholtz energy (5) quantifies the internal energy associated with positive and negative dipole orien-
tations. The Gibbs energy relation

G(E, P ) = ψ(P )− EP (6)

balances this internal energy with the electrostatic energy or work performed by an applied external field. As
detailed [14], where the Legendre transform properties of G are discussed, care must be taken to interpret E as
the independent variable and P as the dependent variable.

2.1.2 Stress-Dependent Regimes: 180o and 90o Switching

The Helmholtz relation (5) was derived under the assumption that dipoles are aligned either in the field direction
or diametrically opposite to it – this characterizes the internal energy associated with field-induced 180o switching.
As illustrated in Figure 3, the application of stresses perpendicular to the poling direction additionally produces
90o switching. It is illustrated in [1, 2] that whereas the strict incorporation of 90o switching requires a 2-D
or 3-D energy landscape, reasonable approximations can be obtained for a number of applications with 1-D
Helmholtz relations whose minima correspond with 180o and 90o dipole positions, as shown in Figure 2(b). We
summarize this latter case.

Following the development in [1, 2], the Helmholtz energy quantifying the internal energy associated with
the three dipole states is taken to be

ψp(P ) =





η(P + PR)2/2, P ≤ −PI

η1(P + Pm)2/2 + β, −PI < P < −P90I

η2P
2/2 + ∆, |P | < P90I

η1(P − Pm)2/2 + β, P90I < P < PI

η(P − PR)2/2, P ≤ −PI

(7)
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Figure 3: Possible polarization states of a single crystal including (a) the state with 0 applied field, (b) the 180o

switch which occurs with a sufficiently strong negative field, and (c) a 90o switch induced by stress.

where

Pm =
η(PI − PR)P90I − η2P90IPI

η(PI − PR)− η2P90I
, η1 = η

PI − PR

PI − Pm
,

β =
η

2
(PI − PR)2 − η1

2
(PI − Pm)2, ∆ =

η1

2
(P90I − Pm)2 + β − η2

2
P 2

90I .

The parameters P90I and η2 are analogous to PI and η, except they apply to dipoles that are normal to the applied
field (i.e., in a 90o orientation). Note that due to the one dimensional context, we consider all normal directions
as the same state. This distinguishes this from a true 2-D approach but greatly simplifies the computation.

The energy relation (7) incorporates the internal energy associated with dipole switching but neglects electro-
mechanical coupling and elastic contributions. Electromechanical coupling can be quantified by the relation

ψes(P, ε) = −aεP − qεP 2, (8)

where a is the piezoelectric coupling coefficient, q is the electrostrictive coupling coefficient, and ε is the strain.
The elastic energy for uniaxial regimes is

ψel(ε) =
1
2
Y ε2 (9)

where Y is the Young’s modulus of the material. The total Helmholtz energy is thus

ψ(P, ε) = ψp(P ) + ψes(P, ε) + ψel(ε). (10)

The associated Gibb’s energy is

G(E,P, σ, ε) = ψ(P, ε)− EP − σε (11)

where σ is the stress. As detailed in [1, 2], enforcement of the quilibrium condition ∂G
∂ε = 0 allows the strain to

be written as
ε = Y −1(σ + aP + qP 2). (12)

Substituting into (11) yields a Gibb’s formulation posed solely in terms of the input field and stress.

2.2 Relations for the kernel P

2.2.1 Stress-Invariant Regimes: 180o Switching

For regimes in which thermally activated relaxation is negligable, direct minimization of (6) yields the kernel

P =
E

η
+ PRδ (13)

5



where δ = 1 for positively oriented dipoles and δ = −1 for negatively oriented dipoles. From (13), it follows that
the local coercive field Ec, local remanence polarization PR, and inflection point PI are related by the expression

PI = PR − Ec

η
. (14)

Thermal activation is manifested by dipoles having sufficient thermal energy to switch states before a minima
of the Gibbs energy is eliminated. To quantify this, the Boltzmann relation

µ(G) = C exp(−G(E, P )V/kT ) (15)

balances the Gibbs and relative thermal energies, where V is a reference volume, T is the temperature in degrees
Kelvin, and k is Boltzmann’s constant. The constant C is a chosen to ensure integration to unity. It is shown in
[14, 20] that the resulting kernel is

P = x+ 〈P+〉+ (1− x+) 〈P−〉 (16)

where x+ denotes the fraction of positively oriented dipoles and

〈P+〉 =

∫∞
PI

P exp
(
−G(E,P )V

kT

)
dP

∫∞
PI

exp
(
−G(E,P )V

kT

)
dP

, 〈P−〉 =

∫ −PI

−∞ P exp
(
−G(E,P )V

kT

)
dP

∫ −PI

−∞ exp
(
−G(E,P )V

kT

)
dP

(17)

are the average polarizations associated with positive and negative dipole orientations. The evolution of dipole
fractions is governed by the differential equation

ẋ+ = −p+−x+ + p−+(1− x+), (18)

where the likelihoods p+− and p−+ of a dipole switching from positive to negative, or vice-versa, are

p+− =

∫ PI+ε

PI
exp

(
−G(E,P )V

kT

)
dP

τ(T )
∫∞

PI
exp

(
−G(E,P )V

kT

)
dP

, p−+ =

∫ −PI

−PI−ε
exp

(
−G(E,P )V

kT

)
dP

τ(T )
∫ −PI

−∞ exp
(
−G(E,P )V

kT

)
dP

. (19)

Here τ is the material and temperature-dependent relaxation time and ε is a small, positive constant (its purpose
is detailed in Section 2.3.1).

For implementation purposes, a backward Euler discretization can provide sufficient accuracy when solv-
ing (18) if stepsizes are reasonably small. The integrals in (17) and (19) can be solved via quadrature routines.
However, this is not necessary in this case, since it is shown in Section 2.3.2 that they can be formulated as a
combination of exponential and error functions. These functions are provided by most mathematical libraries
and generally provide better performance than direct evaluation in both computation time and accuracy.

2.2.2 Stress-Dependent Regimes: 180o and 90o Switching

The kernel development for the stress-dependent case is analogous but employs the Gibbs relation (11). Due to
the definition (7) in the Helmholtz energy, 4 switching points occur: from either positive or negative to 90o and
from 90o to either 180o orientation. We let Ec denote the field at which the polarization switches to a positive
orientation and specify the transition to a ninety degree orientation through the independent parameter PI . The
input electric field levels at which the dipole switches to 90o orientations occur at

E+90 =
−1
Y

(2q2P 3
I + 3aqP 2

I + (a2 − ηY + 2qσ)PI + aσ + ηY PR),

E−90 =
1
Y

(2q2P 3
I − 3aqP 2

I + (a2 − ηY + 2qσ)PI − aσ − ηY PR).
(20)

Note that this implies 180o switches will always be symmetric whereas if linear electromechanical coupling is
significant, the 90o switches may not be symmetric. This was chosen to match behavior observed in stressed
ferroelectric materials.
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For regimes in which thermal activation is negligible, the roots of ∂G
∂P may be obtained numerically for each

of the cases P ≥ PI , P ≤ −PI and |P | ≤ P90I . While it is possible that more than one real root may exist, only
one is typically within a valid range for P .

To incorporate thermal activation, we again balance (11) with relative thermal energy via the Boltzmann
relation (15). This yields three average polarization relations

〈P+〉 =

∫∞
PI

P exp
(
−G(E,P )V

kT

)
dP

∫∞
PI

exp
(
−G(E,P )V

kT

)
dP

, 〈P−〉 =

∫ −PI

−∞ P exp
(
−G(E,P )V

kT

)
dP

∫ −PI

−∞ exp
(
−G(E,P )V

kT

)
dP

,

〈P90〉 =

∫ P90I

−P90I
P exp

(
−G(E,P )V

kT

)
dP

∫ P90I

−P90I
exp

(
−G(E,P )V

kT

)
dP

(21)

corresponding to the three dipole states. Since dipoles have three orientations, we must keep track of the fraction
oriented positively x+ and negatively x−. The third fraction is given by x90 = 1−x+−x−. This resulting kernel
is

P = x+ 〈P+〉+ x− 〈P−〉+ (1− x+ − x−) 〈P90〉 . (22)

The evolution of dipole fractions is simplified by assuming that a dipole may only switch to an adjacent state;
i.e., a negative dipole must switch to 90o, not directly to positive. This yields the likelihood relations

p+90 =

∫ PI+ε

PI
exp

(
−G(E,P )V

kT

)
dP

τ(T )
∫∞

PI
exp

(
−G(E,P )V

kT

)
dP

, p−90 =

∫ −PI

−PI−ε
exp

(
−G(E,P )V

kT

)
dP

τ(T )
∫ −PI

−∞ exp
(
−G(E,P )V

kT

)
dP

,

p90+ =

∫ P90I

P90I−ε
exp

(
−G(E,P )V

kT

)
dP

τ(T )
∫ P90I

−P90I
exp

(
−G(E,P )V

kT

)
dP

, p90− =

∫ −P90I+ε

−P90I
exp

(
−G(E,P )V

kT

)
dP

τ(T )
∫ P90I

−P90I
exp

(
−G(E,P )V

kT

)
dP

(23)

and the differential equation
•[

x−
x+

]
=

[ −p−90 − p90− −p90−
−p90+ −p+90 − p90+

] [
x−
x+

]
+

[
p90−
p90+

]
(24)

governing the evolution of dipole fractions. Again, a backward Euler method typically provides sufficient accuracy
while minimizing computation. We note that unlike the stress-free case, the integrals in (21) and (23) cannot be
reduced to error functions and exponentials and hence must be approximated with a quadrature method.

2.3 Theoretical and Practical Implementation Details

We summarize here issues pertaining to the construction of components arising in the kernel definitions and
implementations.

2.3.1 Construction of Likelihood Relations

The relations (19) and (23) quantify the likelihood that dipoles achieve the relative thermal energy required
to reorient in advance of fields required to eliminate minima of the Gibbs energy. As detailed in Section 2.6
of [14], this is initially formulated as a sum of the discrete set of dipole states with the continuum assumption
and subsequent integration performed to facilitate evaluation of the likelihoods. For the discrete set of states,
the likelihoods are computed by point evaluation of G at PI . Under the assumption of a continuum, however,
point evaluation yields probabilities and hence likelihoods of 0. Thus, care must be taken when formulating
appropriate likelihood relations.

One approach is to employ the formulations (19) and (23) where ε is chosen to be a small positive constant.
The resulting likelihood relations are well-posed but have the disadvantage of requiring an additional, nonphysical
parameter ε.

7



Alternatively, one can approximate the integrals in (19) and (23) with Riemann sums and incorporate ε into
the relaxation time τ to obtain the expressions

p+− =
exp

(
−G(E,PI)V

kT

)

τ(T )
∫∞

PI
exp

(
−G(E,P )V

kT

)
dP

, p−+ =
exp

(
−G(E,−PI)V

kT

)

τ(T )
∫ −PI

−∞ exp
(
−G(E,P )V

kT

)
dP

. (25)

This avoid the uncertainty in the choice of ε and is advantageous in 2-D and 3-D models where the integrals
become surface or volume integrals. For stress-invariant one-dimensional models, both likelihood relations may
be expressed in terms of the complementary error function. While either approach is reasonable and yields
similar results, we employ the former approach in subsequent algorithms.

Either approach for determining likelihood may still yield the nonphysical situation that a dipole has not
switched even after its input Ee has passed the coercive point. The likelihood calculation is intended to allow
dipoles to switch ahead of this point. However, for some parameter values it may dictate that dipoles attempt to
switch infrequently, possibly not until after the field has passed the coercive point. To remove this possibility, we
employ (19) only when Ee < Ec (for p−+) or Ee > −Ec (for p+−). For other values, the likelihood is defined to
be 1

τ(T ) . Analogous definitions are employed for (23). This also has a computational advantage, as (19) or (23)
may overflow the floating point number system for values of Ee well beyond the coercive point. This definition
removes these floating point overflows from consideration.

2.3.2 Conversion of Integrals to Exponentials and Error Functions

In the stress-invariant thermal activation case, the integrals in (17) and (19) can be expressed in terms of
exponential and complementary error functions to simplify their computation. For brevity, this will only be
derived for the positive likelihood and average polarization. The computation of negative likelihood and average
polarization relations is analogous. Consider the integral

∫ y

x

exp
(
−GV

kT

)
=

∫ y

x

exp
(
− V

kT

(η

2
(P − PR)2

)
− EP

)
.

This can be rewritten as

α

∫ y

x

exp

(
− ηV

2kT

(
P −

(
PR +

E

η

))2
)

dP

= α

∫ (y−PR−Ee/η)
√

ηV/2kT

(x−PR−Ee/η)
√

ηV/2kT

exp
(−t2

)
dt

= α

√
2kT

ηV

[
erfc

((
x− PR − E

η

) √
ηV

2kT

)
− erfc

((
y − PR − E

η

) √
ηV

2kT

)]

where α = exp(P 2
R − (PR + E

η )2). Applying this to the likelihood definition and substituting for PI yields

p+− =
1
τ


1−

erfc
((
−Ec

η − E
η + ε

) √
ηV
2kT

)

erfc
((
−Ec

η − E
η

) √
ηV
2kT

)


 . (26)

To specify the average polarization, we note that
∫ ∞

PI

P exp
(
−GV

kT

)
dP = α

∫ ∞

PI

PγdP = −αkT

ηV

∫ ∞

PI

−ηV

kT

(
P − PR − E

η

)
γdP + α

(
PR +

E

η

) ∫ ∞

PI

γdP

8



where γ = exp(− ηV
2kT (P − PR − E

η )2). The first integrand is now the derivative of γ which yields

〈P+〉 =
√

2
(

ηV

kT

) 3
2




exp
(
−

(
−Ec

η − E
η

)
ηV
2kT

)

erfc
((
−Ec

η − E
η

)√
ηV
2kT

)


 +

E

η
+ PR. (27)

We note that this re-formulation is not possible in the stress-dependent case due to the additional terms in (11).

2.3.3 Quadrature Methods and Stress-Dependence

In addition to requiring quadrature methods to evaluate (21) and (23), stress-dependence also necessitates care
when choosing the quadrature method used to approximate the coercive field integral in (4). Note that νc(x)
is defined only for x > 0. Some quadrature methods for this distribution – such as a trapezoid or Simpson’s
rule – will include the zero endpoint. As long as νc(0) = 0, this poses no issue. However, if νc(0) 6= 0, the
stress-invariant formulations will still yield reasonable results. In the stress-dependent formulation, νc(0) 6= 0
gives dipoles whose coercive point from 90o to positive is the same as from 90o to negative, i.e., dipoles try to
switch both directions at once. This yields nonphysical and numerically ambiguous results. For this reason,
implementation of the stress-dependent formulation must avoid νc quadrature points at 0 either by enforcing
νc(0) = 0 or by employing a quadrature method that does not use the left endpoint. Gaussian quadrature is a
natural choice for this reason as well as for accuracy.

2.3.4 Avoidance of Overflow

A final note regards the calculation of (21) and (23). Whereas the equations themselves are well-defined, the
numerators and denominators may grow quite large or small, leading to either a numerical overflow or under-
flow/division by zero. This occurs more frequently for large V/kT . As discussed in [14], the activation behavior
approaches the negligible relaxation model as V/kT −→ ∞. Thus, overflow is dealt with by substituting the
limit – the same energy minimization performed in the negligible activation case – whenever it occurs.

2.4 Numerical Cost of Kernels

The run-times for algorithms directly implementing the kernels P specified in (13), (16) and (22) are summarized
in Table 1. We note that inclusion of stress-dependence results in an algorithm that runs approximately 25 times
slower whereas the inclusion of thermal relaxation requires at least 90 times more computational effort. In the
worst case, inclusion of both relaxation and stress-dependence is over 28,000 times slower than assuming both
are negligible.

It should be emphasized that the run-time depends greatly on several implementation criteria. For example,
in the stress-dependent negligible relaxation case, the roots of a cubic polynomial must be computed. These may
be computed through equations for cubic polynomials or through eigenvalue calculation (the MATLAB roots
command employs the latter approach). The choice of method will impact the run-time but does not change the
qualitative difference in computation time between formulations.

Implementation Algorithm Run-time (s)
stress-invariant, negligible relaxation 2.758× 101

stress-invariant, relaxation 2.448× 103

stress-dependent, negligible relaxation 6.751× 102

stress-dependent, relaxation 7.880× 105

Table 1: Run-times employing a direct implementation the kernels P specified in (13), (16) and (22). Run-times
are for 120,000 temporal iterations and 80 quadrature points for each of the integrals in (4).
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3 Look-up Tables for Faster Computation

It has been demonstrated that inclusion of stress-dependencies or thermal relaxation mechanisms increases the
computation effort (defined as floating point operations) by over an order of magnitude in all cases. For many
control systems, this will preclude the possibility of real-time implementation. To improve efficiency, the model
can be approximated to within an arbitrary degree of accuracy by employing look-up tables. This effectively
trades memory for computation time. The necessary lookup tables will be derived for thermal relaxation, stress-
dependence, and combined relaxation and stress-dependent formulations.

3.1 Algorithm for Negligible Relaxation, Stress-Invariant Regimes

Regimes with negligible relaxation and stresses do not require lookup tables. However, the computation time
may be halved through algorithm optimizations. Note that the discretized model may be written as

P =
Nc∑

i=1

NI∑

j=1

wc[i]wI [j]
(

E

η
+

EI [j]
η

+ PRδ[i, j]
)

=
E

η

Nc∑

i=1

NI∑

j=1

wc[i]wI [j] +
Nc∑

i=1

NI∑

j=1

wc[i]wI [j]
EI [j]

η
+

Nc∑

i=1

NI∑

j=1

wc[i]wI [j]PRδ[i, j].

(28)

In this form, the first term is a constant times the input field, whereas the second is constant. Only the third
term will depend on each quadrature point. Premultiplying either wc or wI by PR further reduces the number of
computations per time step. These changes are reflected in Algorithm 1. Similar optimizations were performed
for each of the following formulations.

3.2 Algorithm for Thermal Relaxation, Stress-Invariant Regimes

As shown in Section 2.4, the majority of the computational effort for the stress-invariant relaxation model is
spent in the computation of the average polarization and likelihood relations (17) and (19). If it were possible to
calculate and store these values in advance, the per iteration time would decrease significantly. The input field
E is bounded by physical constraints whereas the quadrature points must also be bounded due to the decay of
νc and νI as posited in (3). Thus, the values associated with each exp and erfc evaluation are bounded and this
bound can be determined a priori. This defines the lookup table approach; before running the algorithm, the
range between each input is discretized, and the values of (17) and (19) are computed and stored for every grid
element. With even a moderate number of time steps, this reduces the overall computational effort; however, the

# Initial Setup – to be done in advance

addit =
PNc−1

i=0

�PNI−1
j=0 wc[i]wI [j]EI [j]

�
/η

wsum =
PNc−1

i=0

�PNI−1
j=0 wc[i]wI [j]

�
/η

For (j = 0 . . . NI − 1), wI [j] = wI [j]PR End For

# Begin Iteration

For k = 0 . . . length(E)− 1

P [k] = addit + wsumE

For j = 0 . . . NI − 1

out = 0

Ee = E + EI [j]

For i = 0 . . . Nc − 1

If Ee + Ec[i]δ[i, j] > 0

δ[i, j] = 1;

out = out + wc[i]

Else

δ[i, j] = −1

out = out− wc[i]

End If

End For

P [k] = P [k] + wI [j] out

End For

End For

Algorithm 1: Implementation algorithm for regimes with negligible relaxation and no applied stress.
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main purpose is to replace computationally intense real-time components of the algorithm by offline computations
and efficient memory usage.

It may appear that the resulting grid is three dimensional with one dimension for each of the input field E,
interaction field EI and coercive field Ec. However, E and EI are related by Ee = E + EI and as such will
always share a single dimension in the grid. Further, these variables always occur as the combination

Etmp− = E + EI − Ec

in the relations for 〈P−〉 and p−+ whereas for 〈P+〉 and p+− the variables occur as

Etmp+ = E + EI + Ec.

We therefore compute the bounds of Etmp− and Etmp+, discretize these variables, and calculate four 1-D tables
of values, one for each of 〈P−〉, p−+, 〈P+〉 and p+−. Further memory can be saved by noting that the likelihoods
need not be calculated for values of Etmp− > 0 or Etmp+ < 0 as they are defined to be constant in these cases
(see Section 2.3). Pseudocode for this formulation is given in Algorithm 2.

It should be noted that the likelihoods and average polarizations need not use the same discretization of
Etmp− and Etmp+; in fact, the best accuracy for a given memory usage can be obtained by storing more points
for the likelihoods than for the average polarizations. This is due to the likelihoods being exponential functions
whereas the average polarizations are nearly linear.

Memory usage and algorithmic accuracy, defined as the difference between the lookup table approximation
and a direct model implementation, are linearly related. However, the number of computations performed by
the real-time portion algorithm is independent of the lookup table size; the difference is completely contained in
the offline setup.

3.3 Algorithm for Stress-Dependent, Negligible Relaxation Regimes

When stress-dependence is considered in the absence of relaxation, there are no likelihoods to compute. However,
minimizing (11) requires computing zeros of a cubic polynomial. Given the piecewise definition of ψP , this

# Initial Setup – to be done in advance
Determine ranges for each average and likelihood

and calculate look-up tables

# Note: β =
p

2kT/ηV

# 〈P−〉 = −(β/
√

π) exp((−Etmp−/ηβ).2)/erfc(Etmp−/ηβ)

# 〈P+〉 = (β/
√

π) exp((−Etmp+/ηβ).2)/erfc(Etmp+/ηβ)

# p−+ = (∆t/τ)(1− erfc((Etmp−/eta + ε)/beta)

# /erfc(Etmp−/etaβ) for Ee < Ec

# p+− = (∆t/τ)(1− erfc((−Etmp+/eta + ε)/beta)

# /erfc(−Etmp+/etaβ) for Ee > −Ec

# Note: we assume a single stepsize and Ee range for

# brevity. This is not the best choice for accuracy, but the

# extension is straightforward.

For (i = 0 . . . Nc − 1), Ec[i] = Ec[i]/Estep End For

For (j = 0 . . . NI − 1), EI [j] = EI [j]/Estep End For

wsum =
PNc−1

i=0

�PNI−1
j=0 wc[i]wI [j]

�
/η

addit =
PNc−1

i=0

�PNI−1
j=0 wc[i]wI [j]EI [j]

�
/η − PRηwsum

PR = 2PR

# Begin Iteration

For k = 0 . . . length(E)− 1

P [k] = E[k]wsum + addit

base = (E[k]− Eeffmin)/Estep

For j = 0 . . . NI − 1

out = 0

base2 = base + EI [j]

For i = 0 . . . Nc − 1

h− = round(base2− Ec[i])

h+ = round(base2 + Ec[i])

x+[i, j] = (x+[i, j]+p−+[h−])/(1+p−+[h−]+p+−[h+])

out = out + wc[i](x+[i, j](Ppos[h+]− Pneg[h−] + PR)

+Pneg[h−])

End For

P [k] = P [k] + wI [j] out

End For

End For

Algorithm 2: Implementation algorithm for the model with thermal relaxation but negligible stress-dependence.
For brevity, all step sizes and value ranges are treated as equal.
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effectively yields three different polynomials to minimize corresponding to the three possible dipole orientations.
We perform the minimization corresponding to each state in advance and store it in a lookup table. In this case
there are two independent variables in (11) that cannot be combined: the input field Ee and input stress σ.
Thus, this formulation requires three 2-D tables.

As in previous algorithms, memory can be conserved by noting that some values need not be computed. For
values of Ee < −Ec[Nc], the minima corresponding to positive orientations need not be computed because the
dipole will have always switched to a different orientation. Likewise negative orientations need not be computed
for Ee > Ec[Nc], and the ninety degree orientation does not need computed for values at either extreme. This
reduces the memory requirement of the table. Implementation of this approach is detailed in Algorithm 3.

Computation in the real-time portion of the algorithm is independent of lookup table size, as in Algorithm 2.
However, this algorithm also possesses a way to trade a small amount of computation time for increased accuracy,
while holding the table size constant. The second derivative of the energy is small – i.e., the minimized energy
corresponding to each dipole state is nearly linear. Much better accuracy can be obtained by linearly interpolating
between the table values. Since these values occupy a 2-D grid, this is efficiently approximated by interpolating

# Initial Setup – to be done in advance
Calculate the minimum Gibb’s energy tables at the given

Ee and σ values for each possible orientation.

Call these Ppos, P90, and Pneg

c90posconst = PI(2q2P 2
I − 3aqPI + a2 − ηY )/Y + ηPR

c90poscoeff = (2qPI − a)/Y

c90posconst = −PI(2q2P 2
I + 3aqPI + a2 − ηY )/Y − ηPR

c90poscoeff = −(2qPI + a)/Y

For (j = 0 . . . NI − 1), EI [j] = EI [j]/Estep End For

# Begin Iteration

For k = 0 . . . length(E)− 1 # length(E) = length(σ)

c90pos = c90poscoeffσ[k] + c90posconst

c90neg = c90negcoeffσ[k] + c90negconst

P [k] = 0

σind = round((σ[k]− σmin)/σstep)

Epostmp = (E[k]− Eposmin)/Estep

E90tmp = (E[k]− Eninetymin)/Estep

Enegtmp = (E[k]− Enegmin)/Estep

For j = 0 . . . NI − 1

out = 0

Ee = E[k] + EI [j]

Eposind = round(Epostmp + EI [j])

E90ind = round(Eninetytmp + EI [j])

Enegind = round(Enegtmptmp + EI [j])

For i = 0 . . . Nc − 1

If δ[i, j] == 1 # positive

If Ee <= c90neg and Ee > −Ec[i]

δ[i, j] = 0

out = out + wc[i]P90[E90ind, σind]

Else If Ee ≤ −Ec[i]

δ[i, j] = −1

out = out + wc[i]Pneg[Enegind, σind]

Else

out = out + wc[i]Ppos[Eposind, σind]

End If

Else If δ[i, j] == 0 # 90 degree

If Ee ≥ Ec[i]

δ[i, j] = 1

out = out + wc[i]Ppos[Eposind, σind]

Else If Ee ≤ −Ec[i]

δ[i, j] = −1

out = out + wc[i]Pneg[Enegind, σind]

Else

out = out + wc[i]P90[E90ind, σind]

End If

Else # 90 negative

If Ee >= c90pos and Ee < Ec[i]

δ[i, j] = 0

out = out + wc[i]P90[E90ind, σind]

Else If Ee ≥ Ec[i]

δ[i, j] = 1

out = out + wc[i]Ppos[Eposind, σind]

Else

out = out + wc[i]Pneg[Enegind, σind]

End If

End If

End For

P [k] = P [k] + wI [j] out

End For

End For

Algorithm 3: Implementation algorithm for model with stress-dependence but negligible relaxation.
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along one dimension and then the other. Allowing E1 and σ1 to represent the closest table value below Ee and σ,
and E2, σ2 to be the values just above the desired value, this can be written in one equation as

〈P 〉 =P11

(
1− Ee − E1

Estep

)(
1− σ − σ1

σstep

)
+ P12

Ee − E1

Estep

(
1− σ − σ1

σstep

)

+ P21

(
1− Ee − E1

Estep

)
σ − σ1

σstep
+ P22

(Ee − E1)(σ − σ1)
Estepσstep

.

(29)

Here 〈P 〉 = 〈P−〉 , 〈P90〉 or 〈P+〉, values from the table are given by P11 = 〈P 〉 (E1, σ1), P12 = 〈P 〉 (E1, σ2),
etc., Estep is the distance between two field values in the table, and σstep the distance between stress values. In
the numerical tests detailed in Section 4, this was found to increase the accuracy by 2 to 3 orders of magnitude
without significantly altering the computation time.

3.4 Algorithm for Thermal Relaxation and Stress-Dependent Regimes

The use of a look-up table becomes less effective when relaxation and stress-dependent effects are both included.
Here, the average polarizations and switching likelihoods depend on Ee, Ec, and σ. Unlike the negligible stress
case, however, the inclusion of addition terms in (11) no longer allows Ee and Ec to be combined into a single
variable. This necessitates a 3-D lookup table for each of the average polarizations and stress values, yielding a
total of 6 tables. The Ec dimension can be accommodated exactly by using one value at each of the quadrature
points for the νc distribution, so that error is only introduced on Ee and σ. However, this will likely require 25-
100 times more memory than the stress-only variant. Further, while it does not effect the real-time portion of the
algorithm, calculation of the look-up table can be computationally expensive, which effects parameter estimation
techniques. Nevertheless, the look-up table does provide three to four orders of magnitude improvement over a
direct implementation in the real-time portion of the computations. Implementation for this case is summarized
in Algorithm 4.

# Initial Setup – to be done in advance
Determine ranges for each average and likelihood

and calculate look-up tables via quadrature

# Note: we assume a single stepsize and Ee range for

# brevity. This is not the best choice for accuracy, but the

# extension is straightforward.

For (j = 0 . . . NI − 1), EI [j] = EI [j]/Estep End For

# Begin Iteration

For k = 0 . . . length(E)− 1

P [k] = 0

avgtmp = (E[k]− Eeffmin)/Estep

σind = round(σ[k]− σmin)/σstep

base = (E[k]− Eeffmin)/Estep

For j = 0 . . . NI − 1

Eind = round(base + EI [j])

out = 0

For i = 0 . . . Nc − 1

α+ = 1 + p90+[Eind, σind, i] + p+90[Eind, σind, i]

α− = 1 + p90−[Eind, σind, i] + p−90[Eind, σind, i]

x+[i, j] = (α−x+[i, j] + p90+[Eind, σind, i](α−

−x−[i, j]− p90−[Eind, σind, i]))/(α+α−

−p90+[Eind, σind, i]p90−[Eind, σind, i])

x−[i, j] = (x−[i, j]+p90n[Eind, σind, i](1−x+[i, j]))/α−

out = out + wc[i](x−[i, j](Pneg[Eind, σind, i]

−P90[Eind, σind, i]) + x+[i, j](Ppos[Eind, σind, i]

−P90[Eind, σind, i]) + P90[Eind, σind, i])

End For

P [k] = P [k] + wI [j] out

End For

End For

Algorithm 4: Implementation algorithm for the model with relaxation and stress-dependence. All step sizes and
value ranges in the look-up table are treated as equal for brevity.
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Figure 4: Inputs used for the direct implementation of the model and Algorithms 1-4 based on lookup tables.
(a) Input electric field – this pattern repeated 20 times, and (b) Input stress, where applicable

4 Lookup Table Approximation Run-times and Error

Compared to the direct “exact” implementation of the homogenized energy model, the lookup table (LUT)
implementations yield significantly better performance. Algorithms 1-4 were implemented using the same para-
meters and iterations as the direct implementations given in Table 1. All computations were performed using a
Pentium IV Xeon 1.7 GHz processor running Linux. Algorithms 1-4 were implemented in a C language MATLAB
mex file (available from http://research.coire.net). The run-times for the input shown in Figure 4 are given in
Table 2. For each of these tests, the lookup table size was limited to 1000 elements per table for Algorithms 2
and 3 and 80,000 elements per table – 1000 for Ee× σ times 80 values for Ec – for Algorithm 4. In all cases, the
implementation algorithms employed the parameters given in [2]. When reporting results, we let N〈P 〉 denote
the number of quadrature points used when approximating the average polarizations 〈P−〉, 〈P90〉, 〈P+〉 in (17)
or (21) and Np denote the number of quadrature points employed for the likelihoods p−+, p+−, p−90, p90−, p+90,
p90+ in (19) or (23)

We first compare the run-times for the lookup table approximations with the direct implementation. Al-
gorithm 1 ran in one-third of the time of the unoptimized version on this platform whereas Algorithm 2 ran
almost 50 times faster than a direct implementation. With stress-dependence, Algorithm 3 ran 10-12 times faster
(depending on whether the setup time is included) and Algorithm 4 ran either 4000 or 13,800 times faster, again
depending on whether or not setup time is included in the comparison. Thus, the lookup table approximations

Algorithm Setup time (s) Run-time (s)
Neg. relaxation, no stress 0 9.03
Relaxation, no stress 0.09 50.36
Neg. relaxation, stress dep. (σ constant) 0.09 10.50
Neg. relaxation, stress dep. (σ varying) 0.08 10.91
Relaxation, stress dep. (σ constant) 12.64 56.40
Relaxation, stress dep. (σ varying) 122.64 57.12

Table 2: Setup time and run-times for Algorithms 1-4, computed on a Pentium IV 1.7 GHz processor run-
ning Linux, with the algorithms implemented as C language MATLAB mex files and 120,000 time steps being
computed.
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Figure 5: Comparisons of polarization given by direct model implementation and algorithms based on lookup
tables (LUT). (a) Stress-invariant, relaxation algorithm (Algorithm 2). (b) Stress-dependent, relaxation algo-
rithm (Algorithm 4). (c) Stress-dependent negligible relaxation algorithm (Algorithm 3) and (d) approximation
error with and without interpolation.

yield anywhere from 1 to 4 orders of magnitude improvement depending on which formulation is employed.
The level of accuracy afforded by the lookup tables can be adjusted without altering the run-time, although

memory usage and setup time increases with accuracy. To illustrate this, Algorithm 2 was compared with a
direct implementation of the stress-invariant relaxation model using parameters taken from [2]. The results are
summarized in Table 3 and Figure 5(a). The number of quadrature points N〈P 〉 and Np were adjusted separately.
The table suggests that memory is best used by allowing larger tables for likelihoods than average polarizations.
We note that computation time does not increase as the table size increases. Surprisingly, the table does not
show setup time increases as memory increases. This is somewhat misleading since the calculation is rapid, and
the clock on the computer does not have sufficient resolution to resolve the differences as memory increases.

The trends for Algorithm 3 are similar and yield the errors summarized in Table 4. In this case, we include
error values for both rounding and interpolating. Setup time does increase as the amount of memory increases.
Since the lookup tables are two dimensional, the number of points used for both the input field and input stress
are given. In addition to noting the consistent run-times for all table sizes, we note that interpolation did not
increase the run-time of the algorithm. This is surprising in the sense that interpolation requires two to four times
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N〈P 〉 Np Setup time (s) Run-time (s) RMS error (%)
500 500 0.06 54.12 3.229
500 1000 0.07 53.67 3.047
500 2000 0.07 55.37 2.967

1000 500 0.06 53.43 3.230
1000 1000 0.06 54.13 3.048
1000 2000 0.07 55.78 2.968
2000 500 0.07 53.80 3.230
2000 1000 0.07 54.54 3.049
2000 2000 0.07 55.87 2.969

Table 3: Error between the direct model implementation and Algorithm 2 for regimes with thermal relaxation
but negligable stress-dependencies. Errors are root mean square (RMS) values expressed as percentages of the
saturation polarizations (0.3 C/m2). Run-times are for 120,000 time steps.

the memory access and adds several additional additions and multiplies to each kernel evaluation. Investigation
showed the computation had a bottleneck with the storage of δ values to memory and apparently the extra
computation required for interpolation was performed when the processor would otherwise have been waiting
for access. This is both an architecture and a compiler-dependent feature, and the same performance may not
be seen on other platforms. However, the accuracy gained by interpolation, 2 to 3 orders of magnitude, is not
architecture dependent. It will vary if different material parameters are employed but the qualitative behavior
should remain regardless of architecture. As such, interpolation provides an effective way to limit lookup table
size while improving computation performance. These results are also plotted in Figure 5(c) and (d) to provide a
comparison to the direct implementation and illustrate the error introduced by the lookup table approximation.

Given the accuracy gained by interpolation, it is reasonable to ask why it is not performed on Algorithm 2 or 4.
The likelihoods (19) and (23) are exponential; linear interpolation as employed for Algorithm 3 will overpredict
the likelihoods, yielding moments that switch too soon. Each moment that switches prematurely adds 2PR to the
approximation error. As such, linear interpolation does not yield a significant increase when relaxation effects are
included. This also explains the slower convergence of the approximations including thermal relaxation; small
errors present in the likelihood calculation dictate small errors in the dipole states which give larger errors in the
output polarization.

Table 5 and Figure 5(b) illustrate the accuracy of Algorithm 4 for regimes which include both stress-
dependence and relaxation. In terms of accuracy and run-time, the results are comparable to Algorithms 2
and 3. However, in terms of setup time, this algorithm is significantly slower and uses significantly more mem-

Rounding Interpolating
Field points Stress points Setup time (s) Run-time (s) error (%) Run-time (s) error (%)

125 125 0.95 10.36 0.01258 10.61 9.26× 10−5

250 125 1.52 10.45 0.00922 10.44 2.53× 10−5

500 125 3.04 10.34 0.00907 10.45 8.71× 10−6

125 250 1.84 10.42 0.01000 10.45 9.03× 10−5

250 250 3.67 10.38 0.00514 10.40 2.30× 10−5

500 250 7.40 10.49 0.00487 10.70 6.26× 10−6

125 500 4.89 10.60 0.00922 10.66 8.97× 10−5

250 500 9.79 10.50 0.00342 10.71 2.24× 10−5

500 500 19.71 10.56 0.00298 10.63 5.67× 10−6

Table 4: Comparison of the direct and look-up table stress-dependent, negligible relaxation Algorithm 3. Errors
are root mean square values expressed as percentages of the saturation polarizations (0.3 C/m2). Run-times are
for 120,000 time steps.
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Field points Stress points Setup time (s) Run-time (s) RMS Error
25 25 107.20 0.28 2.42363
50 25 173.97 0.28 1.47033

100 25 307.18 0.29 1.16744
25 50 215.55 0.28 2.52963
50 50 343.12 0.28 1.21354

100 50 615.48 0.29 1.06211
25 100 426.51 0.28 2.53719
50 100 693.13 0.28 1.21641

100 100 1225.09 0.29 1.06611

Table 5: Comparison of the direct and look-up table for the stress-dependent, relaxation Algorithm 4, with a
varying input stress and 80 Ec quadrature points. Errors are root mean square values expressed as percentages
of the saturation polarizations (0.3 C/m2). Run-times are for 600 time steps.

ory. This is an unavoidable attribute of the method. Note that Table 5 shows run-times for only 600 temporal
iterations. This amount was chosen to keep the run-time of the direct implementation algorithm manageable.
As shown in Table 2, Algorithm 4 could complete 120,000 iterations in just under a minute, not including the
setup time for the desired table size.

5 Comparison to Experimental Data

In Section 4, we demonstrate that through the use of lookup tables, the model formulations which incorporate
thermal relaxation and stress effects can be implemented in a highly efficient manner while maintaining the
accuracy of the original model. We summarize here the performance of the framework, as implemented using the
algorithms developed in Section 3, for characterizing the magnetic after-effects and stress-dependencies illustrated
in Figure 1. We note that the unified nature of the framework permits a direct extension of Algorithms 1-4 to
ferromagnetic regimes.

In Figure 6, we illustrate the capability of the magnetic model, implemented via Algorithm 2, to characterize
data collected from a cylindrical steel rod having a length of 2 inches and diameter of 0.25 inches. Specifically, it
is noted that by incorporating relaxation mechanisms, the model characterizes the magnetic after-effects which
yield negative differential susceptibilities following field reversal at the beginning of minor loops. Additional
details regarding both the experimental setup and model performance are provided in [3].

The performance of the stress-dependent polarization model, implemented via Algorithm 3, is illustrated in
Figure 7 through comparison with PLZT data from [9]. Parameters were estimated through a least-squares fit
to data collected at prestress levels of σ0 = 0 MPa, σ0 = −6 MPa, σ0 = −10 MPa and σ0 = −15 MPa to
obtain the present model fits. The fits in (b) and (d) illustrate minor loop attributes of the data and model
near negative remanence. The change in curvature exhibited by the data with σ0 = −15 MPa illustrates that
the manifestation of 90o switching becomes increasingly prominent as prestress levels increase. This illustrates
the necessity of incorporating 90o switching mechanisms in both the model and implementation algorithms.
Additional details regarding the experimental setup can be found in [9] whereas the model extensions required
to address 90o switching are presented in [1, 2].

6 Concluding Remarks

The homogenized energy model developed in [11, 16, 18, 20] provides a unified framework for characterizing
hysteresis and constitutive nonlinearities in ferroelectric, ferromagnetic and ferroelastic materials. Due to the
energy formulation of the framework, the effects of thermally activated relaxation phenomenon, stress-dependence
and thermal dependence can be incorporated in a natural manner. However, direct implementation algorithms for
models that incorporate these mechanisms presently do not provide the efficiency required for high-speed material
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Figure 6: (a) Input magnetic field, (b) fit (—) provided by Algorithm 2 to magnetization data (- - -) from [3],
and (c) detailed view of fit.

characterization, actuator or sensor optimization, or real-time control implementation. In this paper, we present
highly efficient implementation algorithms, based on lookup tables, which reduce implementation times by one
to four orders of magnitude for models which incorporate thermal activation and stress-dependence.

In addition to providing significant improvements in efficiency, the use of lookup table approximations hold
a further advantage for those using embedded devices – either microprocessor or gate-array based – in which
integer arithmetic is required. The calculation of minimum energies, average polarizations, and likelihoods may
involve computation on very large or very small numbers. By moving these calculations offline, they may be
performed within a processor capable of floating point operations and returned to integer or fixed-point format
for storage and real-time processing.

As detailed in [8, 14], a highly advantageous attribute of the homogenized energy framework is the property
that approximate model inverses can be constructed with nearly the same efficiency as the direct models. This
permits the design of inverse filters which approximately linearize hysteretic actuator or sensor dynamics and
hence permit linear control design. The development and experimental implementation of inverse filters based
on the algorithms presented here is under investigation.
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Figure 7: Comparison of modeled E − P implemented in Algorithm 3 with PLZT data from [9] for compressive
prestresses of (a) σ0 = 0 MPa, (b) σ0 = −6 MPa, (c) σ0 = −10 MPa and (d) σ0 = −15 MPa.
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